

European Academic Symposium on EAF Steelmaking

ZZRANE

er [[0]]]]

POLITECNICO MILANO 1863

iano la tradizione

AN EVALUATION OF THE PNEUMATIC LIME INJECTION BENEFITS FOR THE PRODUCTION OF C82D2 STEEL BY ELECTRIC ARC FURNACE

D. Mombelli , <u>G. Dall'Osto</u> , G. Villa , C. Mapelli , S. Barella , A. Gruttadauria L. Angelini , C. Senes , M. Bersani , P. Frittella , R. Moreschi , R. Marras , G. Bruletti

TRADITIONAL PROCEDURE

Lime added in form of **lumps**

Essential for a

Proper bath chemistry

Slag foamability

Bath dephosphorization

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

PNEUMATIC INJECTION

Lime injection allows to achieve Consumptions reduction Foaming benefits Operational cost benefits Environmental benefits

Evaluate and validate the benefits of injecting lime compared to the traditional practice for the production of special steels

AIM

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

EAF FEATURES

Gianluca Dall'Osto

4th European Academic Symposium on EAF Steelmaking – 18th June 2021

EXPERIMENTAL PROCEDURES

CaO Consumption

Electrical Consumption

O₂ and CH₄ Consumption

Slag Amount

At the beginning of refining

At the end of refining

Isothermal Solubility Diagram (<u>ISD</u>)

Total Harmonic Distortion (THD)

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

CaO CONSUMPTION

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

TOTAL ELECTRICAL CONSUMPTION

ELECTRICAL CONSUMPTION (REFINING)

ELECTRICAL CONSUMPTION (POWER-ON)

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

ELECTRICAL CO2 EMISSIONS SAVINGS

	INJ1	INJ2
Specific Savings [kWh/t]	30	35
Annual Savings [MWh/year]	13 068	15 246
Tons of Oil Equivalent saved	2443	2851
Tons of not emitted CO _{2eq}	3610	4212

OXYGEN CONSUMPTION

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

METHANE CONSUMPTION

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

METHANE CO₂ EMISSIONS SAVINGS

	INJ1	INJ2
Specific Savings [m ³ /t]	0.4	0.55
Specific Savings [kWh/t]	4.38	6.02
Annual Savings [MWh/year]	1907	2622
Tons of Oil Equivalent saved	357	490
Tons of not emitted CO _{2eq}	417	574

SLAG FOAMABILITY

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

TOTAL HARMONIC DISTORTION

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

SLAG AMOUNT

Gianluca Dall'Osto

4th European Academic Symposium on EAF Steelmaking – 18th June 2021

SLAG MICROSTRUCTURE

Coarser morphology (higher lime amount)

Gianluca Dall'Osto

4th European Academic Symposium on EAF Steelmaking – 18th June 2021

SLAG AMOUNT IMPACT

-2,0 -1,5

2,0

Contour Plot of Slag Amount vs CaO and Oxygen 0 Slag Amount [t] -200 Savings in CaO Addition [kg] -400 -600 -800 -1000 12 13 14 15 16 17 18 19 20 Oxygen Consumption [m3/t]

-1.5 -1,0 -1.0 -0,5 0.5 0,0 0.0 0,5 0,5 1,0 _ > 1.0 Scatterplot of Electrical Consumption and Slag Amount 50 Savings in Total Electrical Consumption [kWh/t] Procedure \diamond STD \diamond INJ1 \diamond INJ2 25 δ \diamond 8 -25 \diamond $^{\circ}$ 8 \diamond \diamond \diamond -50 -2 n 2 -1

Savings in Slag Amount [t]

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

CONCLUSIONS

The main results of the new lime injection technique and the furnace parameters enhancements are summarized as follows:

- $\boldsymbol{\otimes}$ Lime
- O_2 and CH_4 *

Slag foamability

Electrical

Power-On

- decreased by 30÷35 kWh/t (65% during refining)
- decreased by ~ 1.5 min

decreased by ~1000 kg

decreased by 1.5÷2.5 m³/t and ~0.5 m³/t, respectively

best foaming for INJ1 procedure (validated by ISD and THD)

Considering the EPA carbon tax1 $(30 \in /t_{CO2})$ and the social cost savings according to the Stanford **University**²(185€/t_{CO2})

	INJ1	INJ2
Annual Savings [MWh/year]	14 975	17 868
Tons of Oil Equivalent saved	2790	3341
Tons of not emitted CO _{2eq}	4027	4786
'Carbon tax savings [€]	120 810	143 880
² Social cost savings [€]	744 995	887 260

¹ http://www.gualenergia.it/articoli/20160712-prezzo-della-co2-30-euro-tonnellata-la-proposta-francese-ETS

² Moore FC, Diaz DB. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Change 2015;5:127-131

POLITECNICO MILANO 1863

Thanks for your attention!

For any further information:

gianluca.dallosto@polimi.it

