

European Academic Symposium on EAF Steelmaking

POLITECNICO MILANO 1863

STUDY OF THE INFLUENCE OF THE CHARGING MATERIALS ON THE METALLIC LOSS OF A CONTINUOUS CHARGING ELECTRIC ARC FURNACE BY MULTIPLE LINEAR REGRESSION

D. Mombelli, <u>G. Dall'Osto</u>, C. Mapelli, S. Barella, A. Gruttadauria

Steelmaking in Numbers

World Steel Association. World steel in figure 2020

Gianluca Dall'Osto

4th European Academic Symposium on EAF Steelmaking – 18th June 2021

Steelmaking in Italy

Federacciai, Assemblea annuale 2020: la siderurgia in cifre

Gianluca Dall'Osto

4th European Academic Symposium on EAF Steelmaking – 18th June 2021

Enviromental Impact

It is supposed that in the next years at least 40% of the world crude steel production will be performed by EAF thanks to its **lower emission**

The consequent increase in scrap consumption requires the improvement of sorting methods and more conscious use of the charging material

International Energy Agency. Iron and steel - tracking clean energy progress, 2020. [Online; accessed 26-January-2020].

Gianluca Dall'Osto

4th European Academic Symposium on EAF Steelmaking – 18th June 2021

Charging Materials

Composed by: metallic charge, slag formers, iron ore and coke

Scrap classification based on origin, chemical composition, dimensions and density

The presence of tramp elements (in particular Cu) in the scraps decreases the overall quality

E6

Clean iron sources (HBI/DRI, pig iron...) E40 diluite the pollutants but increase the total heat cost

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

Energy Balance

A correct balance between electrical and chemical energies leads to a **yield increase** and **cost decrease**

Scrap price responsible of the **70** ÷ **80%** of the **transformation cost**

The control of the metallic loss (Δ) is **fundamental** for the competitiveness of the process

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

Mathematical Modelling

$$\begin{split} \frac{W_R}{kWh/t} &= 300 + 900 \left[\frac{G_E}{G_A} - 1 \right] + 1600 \frac{G_Z}{G_A} + 0.7 \left[\frac{T_A}{\circ C} - 1600 \right] \\ &+ 0.85 \frac{t_S + t_N}{min} - 8 \frac{M_G}{m^3/t} - 4.3 \frac{M_L}{m^3/t} \end{split}$$

- W_R specific electric energy consumption t_s G_E weight of ferrous materials t_N
- G_A furnace tapping weight
- G_Z weight of slag formers
- T_A tapping temperature

- power-on time
- t_N power-off time
- M_G specific burner gas
- M_L specific lance oxygen

Static and **dynamic empirical models** are used in order to **study**, **predict** and **optimize** the EAF performances

In the main models based on energy and mass balance the **scraps are considered as one single variable**

The relationship between metallic loss and specific type of charing material has to be further investigated

Aim of the Proposed Work

The influence of each several charging materials on the metallic loss has been studied trough the development of two regression models:

Multiple Linear Regression (MLR) without variable interactions

Multiple Linear Regression (MLR) with variable interactions

The regression models were made by the statistical analysis software **Minitab**

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

Electric Arc Furnace Configuration

Continuous casting furnace (Consteel)

Nominal capacity of 250 tonnes

Production of **mild steel** (C=0.018÷0.022 wt%.)

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

Data Supplied

Two data set regarding the EAF process parameters and charging materials weights of **56 monthly heats**

The main differences regarded the percentages of charged PI, HBI, LAMM, RP and LAPS

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

Preliminary Analysis and Data Elaboration

The furnace performances and parameters were **comparable with the state of the art** ones

The metallic loss showed different values based on the charge mix blend

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

Gianluca Dall'Osto 4th European Academic Symposium on EAF Steelmaking – 18th June 2021

Gianluca Dall'Osto <u>4th European Academic Symposium on EAF St</u>eelmaking – 18th June 2021

Source	Adj SS	Adj MS	F-Value	P-Value	Coefficient		
HBI	9.89	9.907	4.85	0.043	0.16		
LAMM	113.04	113.106	55.33	0.000	0.42		
PROLER	19.67	19.673	9.62	0.007	0.16		
RP	11.32	11.360	5.56	0.008	-0.12		
Model Summary							
R-sq	R-sq(adj)	R-sq(pred)					
98.20%	97.75%	97.21%					

Source	Adj SS	Adj MS	F-Value	P-Value	Coefficient		
LAMM	36.92	36.924	33.31	0.000	0.3334		
CES x HBI	9.46	9.457	8.53	0.011	0.1051		
CES x PROLER	5.74	5.741	5.18	0.039	-0.0233		
PI x HBI	5.88	5.875	5.30	0.037	-0.0101		
PI x LAPS	30.92	30.921	27.90	0.000	0.0187		
HBI x LAMM	15.19	15.193	13.71	0.002	0.0377		
HBI x LAPS	7.24	7.243	6.53	0.023	-0.0204		
Model Summary							
R-sq	R-sq(adj)	R-sq(pred)					
98.20%	97.75%	97.21%					

MLR Models Validation

The model validation performed using **25 heats** not used in the calibration

High model **reliability and prediction** for **7÷12% metallic loss** values

Gianluca Dall'Osto

4th European Academic Symposium on EAF Steelmaking – 18th June 2021

The aim of the work was the analysis and description of how the different scrap types influences the metallic loss of a continuous casting EAF, the main results can be summarized as follows:

- Charging materials regression coefficients were physically coherent
- Predicted metallic losses close to the experimental ones
- Metallic losses are influenced mainly by some specific charging materials (LAMM, PROLER and HBI)
- Second order interactions between the charging materials during the melt are present and affects the metallic losses
- The predictive ability of the statistical method can be increased by adding as individual variables the different categories of scraps used as charging materials

POLITECNICO MILANO 1863

Thanks for your attention!

For any further information:

gianluca.dallosto@polimi.it

